
Design Reuse - Practical Problems and Solutions

Thomas Harriehausen

Siemens AG, Semiconductor Division
HL CAD SYS

P.O. Box 80 17 09, D-81617 Munich, Germany
Phone: +49 89 636-24762

Fax: +49 89 636-23650
Thomas.Harriehausen@HL.Siemens.DE

1st Workshop “Reuse Techniques for VLSI Design”
September 1, 1997

Karlsruhe, Germany

Design Reuse - Practical Problems and Solutions

Thomas Harriehausen
Siemens AG, Semiconductor Division

HL CAD SYS
P.O. Box 80 17 09, D-81617 Munich, Germany

Keywords

Design Reuse, ASCIA, ASIC, Hardware Description Language, Intellectual Property, Core
Based Design, Macro Cell, Business Model, Security, Design Data Management, Standards

Abstract

Siemens Semiconductors is one of the world's biggest developers and producers of standard
and application specific integrated circuits. Main areas of activity include memories, chip-
cards, microcontrollers, automotive, telecommunication and consumer electronics ICs. Our
unified “all-in-one” IC design system “ASCIA 4.1" supports most of the technologies,
libraries and design methodologies used within the company worldwide.

It is almost generally accepted that design reuse may be a way to dramatically increase pro-
ductivity and shorten design development time for certain - but not all - product groups.
Before design reuse can become an integral part of design methodologies, a wide range of
questions (technical, commercial, legal, social) has to be answered. Even of the technical
issues, several are not addressed by the EDA tool suppliers. Some of them are so basic that
many managers and researchers are not aware of their existence.

In this contribution, a short overview shall be given of the problems which designers and
CAD support people face who want to push design reuse in a “real-life” environment. Con-
siderations and solutions implemented in ASCIA 4.1 are presented where available.

1 Introduction

1.1 The Vision
Design reuse is currently being discussed as the only means to fill the dramatically growing
gap between progress of deep sub micron semiconductor technology and electronic design
automation (EDA) tool productivity. Around 8/96, the president and CEO of the EDA tool
vendor Cadence Design Systems, Joe Costello, travelled the world spreading his vision of
“mix & match” or “plug & play” of “intellectual property (IP) blocks” to build “systems
on a chip (SOC)” which meet price, time-to-market and performance requirements.
The instrument to define the yet missing technical basis (data and interface standards) for
this goal was initiated (and supplied with standardisation proposals) by him, too: the “Vir-
tual Socket Initiative Alliance (VSIA)”. It remains to be seen whether VSIA will be able
to reach goals that e.g. the “CAD Framework Initiative (CFI)” (now called “Silicon Inte-
gration Initiative”) and several other organisations missed to reach until today. The worst
thing that could happen is that VSIA just declares a bunch of existing (preferably Cadence
originating) formats like C, C++, VHDL, Verilog, SDF, LEF, GDSII to be the “new” stand-
ards for SOC designs.

1.2 The basic Problems
Some EDA tool vendors promise to deliver software which allows to build SOCs containing
millions of logic gates. Many papers are published about reuse of VHDL design data. One
might think: “Well, where is the problem, why doesn't everybody just do it?”

One problem is that most people talking/writing about design reuse are explicitly or implic-
itly only considering synthesis of purely digital - usually CMOS - integrated circuits
(ICs) using a hardware description language (HDL). But complete complex systems will
scarcely ever be totally digital. Combining digital and analog, maybe even radio frequency
(RF) functions on a chip is absolutely not straight-forward and scarcely supported by
today's EDA tools.

Furthermore, IP blocks are not a new idea, just a new term for what we formerly called
“macro cells”, “cores” or just “building blocks”. In all established IC developing organisa-
tions, lots of IP exists. Thus, the second problem is to make “old” cores which were not
designed for reuse reusable in SOCs, at least within the company.

The third problem is that some facets of “design reuse” (e.g. commercial, legal, security,
educational, social issues) can't be tackled with EDA software. People have to change their
working style, their way to communicate or even their way of thinking and solving prob-
lems.

The fourth problem is that both “design for reuse” and “design by reuse” do not always
make sense. Frequently, designers find that the effort to implement the requirements
imposed by both approaches does not pay out. This is often the case for analog building
blocks.

And last but not least: Although most of the existing EDA-related challenges are known for
purely digital ASICs consisting of newly developed cores and glue logic, satisfactory com-
mercial solutions do not yet exist for all of them. Some “success stories” are just marketing
hype.

1.3 Analogies
The people who are developing methodologies for IC design reuse can learn from related
domains where similar problems have to be or even have been solved.

The first domain is software development. Development, test and maintenance of complex
software can only be managed by partitioning it. The price for partitioning software are data
interfaces. An interesting approach is to build complex software packages from lean, spe-
cialised “applets” which conform to certain linking and data exchange standards. The ana-
log terminology in chip design are “chiplets”. The problem is analog, too: design data
exchange and signal interface standards must be defined and respected. In this domain, the
EDA industry can probably learn from the software industry.

The second domain is computer aided engineering (CAE) of the electronic systems which
are built from the components we are talking about, e.g. printed circuit boards (PCBs).
Many of the problems which had to be solved for these systems will become increasingly
important for us like easy IP block selection from catalogues, “pin compatibility”, second
sources for cores, system simulation using “black box” models, “at speed” hybrid analog/
digital manufacturing test, remote firmware maintenance/update, optimization of placement
etc. I think that in this case, both domains can learn from each other.

1.4 Real Life
Like many other semiconductor companies, Siemens Semiconductors currently doesn't con-
sider EDA software development as their core competency. Thus, we are primarily using
software from highly specialised EDA tool vendors like Synopsys, Cadence, Mentor, View-
logic etc. This is the reason why publication of brilliant theories and great algorithms for
EDA tools or reuse workflows without a practical implementation doesn't help us at all.

On the other side, a bunch of commercial EDA tools and proprietary libraries doesn't make
up a design system (although many people think so). None of our EDA tool suppliers can
deliver an IC design system which works “out of the box”. The software we get on CDROM
may be sufficient to execute some basic labs at a university's graduate IC design course. To
create a leading-edge IC CAD system which permits SOC designs, software components
from many sources have to be compared and integrated. The more versatile and comfortable
this system shall be the more effort must be spent by the semiconductor company's CAD
people or expensive consultants from the EDA vendors.
Most of the design libraries which EDA tool vendors deliver with their software are not
suited for industrial use. Siemens Semiconductors’ central library department delivers a
wide spectrum of libraries including several macro libraries to our user community to
enhance productivity through reuse. But most of the cores which are potential candidates
for core based designs are created by designers in our business units.

After a short overview of our unified IC design system ASCIA 4.1, several dimensions of
the “design reuse” problem will be highlighted with the intention to start a controversial dis-
cussion.

2 ASCIA 4.1 Overview

The IC development system most widely used at Siemens Halbleiter (“HL”) is “ASCIA
4.1” (Advanced Silicon CompIlAtion) [1]. This unified, “all-in-one” IC design system
consists of a proprietary kernel, “best-in-class” design tools from all leading EDA tool ven-
dors, technology data for all processes used by HL, and a variety of libraries.

Originally only intended for in-house use, today more than 1000 designers at almost 30
locations around the globe are using this system. This means that ASCIA 4.1 is one of the
world's most widely spread productive IC development systems. The only way to promote
this originally “monolithic” in-house system into an externally installable product was mod-
ularisation. Today, individual ASCIA 4.1 subsystems (“design kits”) can be installed at
external locations.

ASCIA 4.1 supports fullcustom and cell based design methodologies, schematic, HDL and
symbolic high level design entry. A wide range of device, standard cell and macro libraries
are available for the ASCIA users. ASCIA offers a portfolio of more than 30 technologies
like bipolar, CMOS (analog, digital), BiCMOS, smart power and several special purpose
technologies.

ASCIA 4.1 was initially released in 12/94 as our “4th generation IC CAD system”. Since
then, new system components are released monthly after having passed internal QA of the
CAD and LIB departments. Meanwhile, ASCIA 4.1 has reached a high level of maturity.
Recent areas of development are the migration of ASCIA from the SunOS 4.1.3 to the Sola-
ris 2.5.1 operating system and the introduction of Cadence's data management tool “TDM”
which is part of Cadence's DFII 4.4.X.

3 Problems and Solutions

Design reuse is a multi-dimensional problem. The following sections shall underline this
thesis and thus also contain some aspects which are usually not considered in this context.
Most items are highlighted from a system architect’s point of view.

3.1 Design Representation Standards
EDA data standards are needed to pass the design data between the tools in a flow. But they
are also necessary to efficiently exchange data between different companies which probably
use different tools and data management systems.
Our industry lacks stable, fully supported standards. Most tools can only handle a subset of
one version of a data representation standard (“view”). Thus, some information is usually
lost when they are used as intermediate format.
Most EDA tools store their working data in a proprietary format and partly even in proprie-
tary databases. Thus, we usually have a hierarchical data representation architecture:
Between CAD systems or companies, data is exchanged using the “standard” formats. On
top of this data bus, tool specific data representations allow effective processing of the data.
Obvious setbacks are the need for data translation and the risk of inconsistent data which we
face whenever data is duplicated. For timing information, a comprehensive standard from
which all proprietary views can be derived is still missing.
To avoid the need for data conversion and the risk to loose data or work with inconsistent
data, some people think it makes sense to focus on one EDA tool supplier. But even tools
from the same supplier do not necessarily understand the same data “standard” (e.g. SDF).

External design contractors which are designing for Siemens Semiconductors do get an
ASCIA subsystem adapted to their design's needs to avoid data exchange problems.

3.2 Entities of Reuse
Design reuse doesn't start with complex cores. Today, even a “full custom” IC will normally
not be designed from scratch. Device libraries with parameterised layout cells (“pcells”) can
enhance productivity dramatically and contain valuable IP. Technology specific standard
cell libraries are needed for synthesis of digital ICs. The limit between a complex standard
cell and a macro/mega cell (i.e. “core”) is not clearly defined.
Analog cores (like PLLs, A/D and D/A converters) usually contain less components than
digital cores (like microcontrollers, DSPs). It is much more difficult to create a reusable
analog macro than a digital one because analog macros almost always have to be parameter-
isable. A core based deign thus consists of one or more cores plus “glue” parts. The follow-
ing terminology is often used to distinguish between different classes of cores:

• Hard core: Not customisable, usually optimised, technology dependent, layout and sim-
ulation models but no netlist available, good IP protection possible

• Firm core: Partially customisable to application specific needs, technology dependent
• Soft core: Highly parameterisable, technology and application independent

3.3 Design Reuse Levels
The scope of design representation levels on which design data is reused ranges from sys-
tem level description via schematics and netlists down to physical layout.

For reuse on physical level, ASCIA 4.1 contains the proprietary tool “Mask Layout Reduc-
tion (MLR)” to map layout data between related technologies. Design rules are automati-
cally obeyed and required chip area can be minimised through compaction.

3.4 Integration of non-digital Blocks
Integration of digital cores which were developed in the same HDL within the same envi-
ronment is the easiest reuse scenario. Things get really challenging if analog blocks or full-
custom digital blocks shall be integrated. In this case, the non-HDL blocks must be
encapsulated to allow processing in the synthesis oriented design flow. Other problems have
to be solved if old designs shall be reused of which only a netlist or the layout exists

3.5 Reproducibility of Design Environment
Yes, this is also a real-life reuse issue. If a design project shall be continued after a pause of
several months or if a redesign of a chip which was designed several years ago is necessary,
designers often face the problem that they can't reuse their own data. The reasons can be
manifold: one of the tools formerly used is no longer in the market or the license has
expired or a new version of the tool has been introduced which is not data compatible to the
old version. The same may happen with computing infrastructure components like operat-
ing system, graphical user interface or file system used. Also, the contents of the libraries
used (referenced) in the design may have changed. Even if only bugs were removed or
enhancements implemented, old designs may no longer work.
In the CAD department, we decided not to keep at least one sample of all hardware, operat-
ing systems and EDA software tools in an archive because in the end, it would probably not
help. After 5 years, almost nobody will be able to get these old components up and running
again. Our tool vendors are usually not willing or able to generate license files for ancient
software versions.

Within ASCIA 4.1, we try to provide a stable design environment at least for the duration of
a design project. Our means to accomplish this are modularisation of the CAD system and
versioning of these components. ASCIA consists of versioned “packages”. Packages are
technologies, libraries, tool bundles (like a release of the Synopsys IC design software) and
also the ASCIA kernel. Each design may define which version of which packages it wants
to use. The problem for the CAD department is that the number of possible combinations of
tool and library versions used can not be supported and we have to focus on certain “main-
stream flows” consisting of predefined sets of component versions.

3.6 Modularity, Hierarchy, Interfaces
Design of SOCs is only possible using a “divide-and-conquer” strategy, i.e. partitioning the
system into blocks, definition of the interfaces, concurrent design of the blocks or selection
of suited cores (“make or buy”) and finally, system integration. If a block is too complex,
the methodology has to be applied recursively. A key item are the interfaces, e.g. on-chip
buses which must be well-defined but as general and versatile as possible (both with respect
to function and timing) while providing the performance required.

Both aspects of reuse, “design for reuse” and “design by reuse”, can only be successfully
applied if the blocks handled are of appropriate complexity. The more complex a core is, the
more costly its creation will be. But its value may decrease because it becomes inflexible
and creates additional restraints (e.g. w.r.t. place&route, timing) for the whole design.

In ASCIA 4.1, the design environment for a chip has a modular, hierarchical structure. Each
design has its own UNIX account which contains all the design's data. Each project may
consist of an arbitrary number of subprojects. Complex designs should be partitioned into
several subprojects which can be designed at different sites and can use different design
methodologies. Blocks which are reusable are stored in business unit specific, “internal ref-
erence libraries”. Design project accounts, internal reference libraries and all libraries sup-
plied by the central library department have a unified structure. Through this ingenious
feature, ASCIA 4.1 users can easily build up their design from different sources and reuse
of design data among the worldwide ASCIA user community is facilitated.

3.7 Versions, Variants, Configurations of Design Data
Design for reuse only pays out if the IP blocks are used often and for a long time period.
This implies that they have to be maintained, e.g. to remove bugs, increase flexibility and
robustness, add new features or adapt them to new technologies or EDA tools. For this
maintenance process, versions (sequential in time, reflecting design history) and variants
(parallel in time, allowing for design alternatives) must be handled and it must be possible
to answer the question “who did receive what data when?” Especially in case of generated
macros like memories and pad cells where the end user operates (potentially error prone)
generator software, this may be a real problem.
As soon as versions and variants must be handled, configuration management is necessary
which allows to defines which components belong/fit together.

In ASCIA 4.1, both the CAD system (including all centrally developed reference libraries)
and the design environments are versioned. A special version is the “current” version which
points to the most recently released version. Of each ASCIA subproject, an arbitrary
number of versions/variants may exist. In the subproject version containing the “top” cell of
the design, an ASCIA specific, central configuration files exists which defines the sub-
project versions and ASCIA reference library versions which shall be used to create the
design hierarchy below the top cell. Using “current” versions, dynamic binding is possible.
Using a fixed version name, static binding can be implemented. All design tools in ASCIA
extract the information about the location of design data to use from this configuration file.

Implementation of these basic design data management (DDM) tasks on UNIX level has the
advantage of minimal administrative and performance overhead. The setback is that
advanced DDM functions like multi-user access control and delta storage are not available.
VHDL designers usually use emacs plus rcs or sccs to manage their source files.

3.8 Verification, Parasitics, Timing, Testing
Verification of the behaviour of integrated circuits is usually done using simulation. For
cores, models for functional and timing simulation must be available. For a hard core which
is delivered without netlist, a “black box” model must be provided to protect the IP con-
tained in it while allowing verification of the complete system. For digital designs, more
efficient alternatives are available in the form of formal verification and emulation. The
views for both purposes must contain a complete description of the core's logic and thus
cause an IP protection problem.

Physical verification runs (like DRC, ERC, LVS) should not be necessary for automatically
created layouts. If however, manual changes were applied to the physical design or if any
tool in the flow is unreliable, this last, very time consuming step becomes necessary, again.

Parasitic effects like crosstalking can only be calculated exactly when the physical design of
the chip is known. Hard cores which work in many chips may fail in others due to parasitics
caused by superimposed “external” circuitry. For big cores, it is unrealistic to prohibit any
over-the-block routing. Routing channels for this purpose in hard cores make these even
bigger.

Correct function of a soft or firm core in a customer's design depends on the quality and per-
formance of the target technology and the cells offered by the library used by the synthesis
tools. Thus, timing analysis of the synthesis results (e.g. using static timing analysis) is
always necessary.

If a SOC is built using cores, the design for test (DFT) strategies implemented in the cores
must fit together. This can be a problem with hard cores or if insertion of test functionality
pushes a soft core's parameters off its specification.

3.9 Documentation, Design History
Documentation is a key issue for reusable components. But it seems to be a serious threat to
many engineers. High time pressure is frequently used as an excuse when important know-
how about the design stays in the heads of designers and therefore is lost when this expert
changes the team. This problem requires a general change in working methodology and pri-
orities.
A market for cores requires easy access to comprehensive data to select suitable cores for
design-in and to identify application areas for which development of new cores makes
sense. The WWW is probably the service to provide and search the information about avail-
able/required IP blocks. Siemens has built up one of the most sophisticated intranet infor-
mation infrastructures in semiconductor industry. We provide all information about our
CAD system via intranet WWW.
Our commercial EDA tools do not have a built-in facility which simplifies or forces docu-
mentation of the design process. For HDL based designs, information about the design his-
tory (“who did what when why?”) can be maintained with simple tools like sccs or rcs.
Most tools which handle graphical information (e.g. schematic entry tools) don't provide
such functionality and don't know the meaning of a user's actions.
In ASCIA, we have implemented a utility for the Cadence DFII which asks for documenta-
tion input whenever a designer saves his work or checks it in.

3.10 Quality
A design block which shall be reusable must fulfil higher quality requirements than “nor-
mal” design data. These requirements include

• completeness and consistency of views
• precision of models w.r.t. topology and parameters
• robustness w.r.t. manufacturing process, timing budgets and parasitic effects caused by

circuitry external to the block
• testability w.r.t. test coverage and support for certain test methodologies, e.g. IDDQ or

ATPG
• possibility to verify the quality of a (new) block (version) automatically using e.g.

regression testing

This is just a matter of effort in case a block is designed for reuse right from scratch. If
blocks from an existing design shall be made re-usable later, things become more difficult.

3.11 Backup, Archiving
Another reason why a designer might not be able to re-use yesterday's results is that data is
accidentally deleted or that due to a system malfunction, data is lost. In the UNIX world, the
only help is to restore data from a - hopefully existing - backup. Unfortunately, a UNIX-
level backup of databases which are currently being changed may cause problems.

For QA (ISO 9000), disaster recovery and product warranty reasons, we have to archive all
design data which resulted in sold chips. The medium used must keep the data physically
readable for at least 10 years. If this time frame is considered, it does not make any sense to
store data in proprietary formats, e.g. Cadence or Synopsys or Avanti databases. The only
formats which make sense are the few “standard” formats we have like EDIF, GDSII,
SPICE, VHDL, Verilog and some other ASCII coded data.

3.12 Distribution of IP
IP blocks may be reused by the same design group, by different design groups within the
same company or by design groups from other companies. Thus, processes to exchange
design data between projects, sites and companies are required.
As a global player in the semiconductor market, Siemens HL has microelectronics develop-
ment centres in Europe, Asia and the USA. Multi-site projects are usual since several years.
Because all development centres use the unified ASCIA 4.1 environment, exchange of
designs is very easy.

3.13 Commercial and Legal Issues
Exchange of IP requires a suitable business model. Fundamental questions like “Who has to
pay whom how much for which kind of reuse of what?” have to be answered.
Probably, the semiconductor industry will split up into two distinct groups: IP providers and
IP users. Today, Siemens Semiconductors plays several roles: ASIC design house, standard
semiconductor producer, silicon foundry (to a limited extent), IP developer, IP provider (to
a limited extent), IP user. We will have to decide whether we want to act as an IP vendor in
the future.
Legal issues related to ownership and responsibility have to be clarified: “Who is responsi-
ble for quality, characterisation, documentation, synthesisability, testability, maintenance,
defect analysis?” and “Who is responsible if a re-used component fails?” If we try to protect
IP from becoming “public domain”, we have to be able to answer questions like “How can a
company prove that it is the originator of an IP block?” How can a core vendor track the
trail of its IP, i.e. answer the question “Who did use which core in which design when?”
“Vagabonding” macros of unclear origin which differ from their source in an unknown way
are a threat both for the potential user and the original supplier.

Today, we have almost no answers to these questions in place. Hopefully, we will be able to
adopt some solutions from the software domain.

3.14 Intellectual Property Protection
In the classical semicustom ASIC development model, the customer received only models
of the library provider’s IP. When IP blocks shall be sold to be fabricated elsewhere, it
becomes difficult to retain IP.
In the past, reverse engineering of chip designs based on actual silicon was very expensive.

As soon as the design data is available in any machine readable format, life becomes much
easier for IP pirates. No matter whether encrypted HDL code, endless flat netlists, gigantic
layout data or a model in executable format is passed: it is possible to derive information
from it which was not intended to be unveiled.
This problem has been recognised as one of the most important ones with respect to a global
market for IP. One solution approach is to distribute “compiled” data instead of source data.
But there is no real solution in sight. And I doubt that there will be one because of the anal-
ogy to the software domain where powerful reverse engineering tools exist. One approach I
can think of is “security by obscurity” i.e. to make a design so complicated that it becomes
difficult to understand it. Which applies to users and maintainers ...

3.15 Data Security
Today, most companies use UNIX as the main computing platform for IC design. UNIX is
and will always be an inherently insecure operating system. Whoever wants to get superuser
privileges (“root”) will be able to manage that through one of many security holes in the
operating system and application software. A superuser can read and modify all data on all
workstations s/he can access.

The internet is a very serious threat to system security. Using security holes in internet tools
like news readers or WWW browsers, people from outside a company can gain illegal
access to important IP. Therefore, design environments for critical products may have no
direct or indirect connection to the inter- or intranet.
The internet and its protocols are often proposed as the ideal medium for IP exchange.
Although this is probably right, two things have to be regarded. Firstly, HTTP is not suited
for transfer of large amounts of data. Secondly, all data transferred in the Internet is system-
atically being snooped by diverse actors.

The only secure mode to store and transmit design data is in an encrypted form. Use of
“strong” encryption methods must be permitted for this.

4 Outlook

Design entry is steadily moving to higher levels of abstraction. Graphical high-level (e.g.
flow-chart and state-machine) design entry tools may be the next generation after today's
HDLs. They can facilitate documentation and give a better overview of complex systems.
The variety of design methodologies will increase. For those designers which hate GUIs, C,
C++, Java or similar textual representations will be available.

Core based designs will normally contain programmable components. Hardware/software
co-design will be the next challenge to tackle. Software development environments and our
known hardware design systems will have to grow together. The overall development envi-
ronment will become even more complex. We need good system architects and well edu-
cated/trained developers to work in such an environment.

Where will the “systems on chip” of the future be designed? Maybe, in 10 years from now,
many EDA tools will be developed and used in Asia. Millions of well-educated hardware
and software engineers will be available in countries like India, Korea and China soon.
Then, “teleworking” will get a completely new meaning for Europe’s expensive engineers.

As a consequence of easy information exchange (e.g. WWW) and growing worldwide
availability of engineering manpower, price for intellectual property of any kind will

decrease. It can't be ruled out that some core providers will use “dumping” prices to push
their products into the market hoping to establish built-in proprietary interfaces as “de
facto” standards.

Let’s see what CFI, VSIA, ECSI and the like will have achieved till then.

5 Conclusion

Design reuse is a very complex challenge. Missing or insufficient standards for design data
representation and exchange reduce productivity in the whole semiconductor industry.

In case a worldwide market for design data will emerge, the products handled will probably
be complex entities of design data, the so called “cores”. Processes to create, model, test,
document, maintain, offer, protect, search, transmit, verify, pay, integrate such cores have
partly to be defined, yet.

This overview had the intention to highlight that there is still a long way to go until we can
build systems on a chip in a “plug & play” manner using analog and digital cores. In their
marketing papers, our EDA tool suppliers usually describe what they want to be able to do.
Not what they currently can provide. And which EDA tool vendor offers satisfying solu-
tions for documentation, design data management, quality assurance, backup and encryp-
tion?

6 References

[1] Harriehausen, T.: “ASCIA - A Multi-Vendor IC Design System”
Proc. Int. Cadence User Group Conf., Sept. 8-12, 1996, Phoenix, AZ, pp. 207 - 215

About the Author
Born in 1958 in the north of Germany, Thomas
Harriehausen finished his studies of Electrical

Engineering and
Computer Science
at the University
of Hannover with
the diploma degree
in 1987.
His primary inter-
ests were in micro-
electronics,
microprocessors,
telecommunica-
tion, operating
systems and soft-
ware engineering.

His diploma work was about new algorithms for
automatic layout generation for bipolar ICs.
For his Ph.D. thesis, he developed a system for
adaptive, real-time simulation of thermal net-
works.

Since 1992, he is with Siemens Semiconductors
(“HL”) in Munich where he started as a support
engineer in the central IC CAD department. He
is one of the architects of HL's unified “all-in-
one” IC design system ASCIA 4.1.

He became leader of the “CAD System Integra-
tion” group in 1995.
Since 1996, he is responsible for CAD “Sys-
tems and Training”.

